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On Nekovář’s heights, exceptional zeros and a conjecture of
Mazur-Tate-Teitelbaum

KÂZIM BÜYÜKBODUK

ABSTRACT. Let E/Q be an elliptic curve which has split multiplicative reduction at
a prime p and whose analytic rank ran equals one. The main goal of this article is
to relate the second order derivative of the Mazur-Tate-Teitelbaum p-adic L-function
Lp(E, s) attached to E to Nekovář’s height pairing evaluated on natural elements aris-
ing from Beilinson-Kato elements. Our height formula allows us, among other things,
to compare the order of vanishing of Lp(E, s) at s = 1 to its (complex) analytic rank
ran, assuming the non-triviality of the height pairing. This has strong consequences
towards a conjecture of Mazur, Tate and Teitelbaum.
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1. INTRODUCTION

Fix a prime p > 3 and an elliptic curveE defined over Q that has split multiplicative
reduction at p. Let L(E, s) (resp., Lp(E, s)) denote the complex Hasse-Weil L-function
(resp., the Mazur-Tate-Teitelbaum p-adic L-function) attached to E. By the work of
Wiles [Wil95], L(E, s) is admits an analytic continuation to the whole complex plane.
Let ran denote the order of vanishing of L(E, s) at s = 1. As we have assumed that the
elliptic curve E has split multiplicative reduction at p, the p-adic L-function Lp(E, s)
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2 KÂZIM BÜYÜKBODUK

has an exceptional zero at s = 1, in the sense of Greenberg [Gre94], due to the vanish-
ing of the interpolation factor (1− p1−s)(1− p−s) at s = 1. Mazur, Tate and Teitelbaum
conjecture in this case that

(1.1) ords=1 Lp(E, s) = 1 + ran.

This is the conjecture that the title of this article refers to. Furthermore, they conjec-
tured a formula for the first derivative of Lp(E, s):

(1.2)
d

ds
Lp(E, s)

∣∣∣
s=1

=
logp(qE)

ordp(qE)
· L(E, 1)

Ω+
E

,

where Ω+
E is the real period of E and qE is the Tate period of E (obtained via the p-adic

uniformization of E) and logp is the p-adic logarithm. Greenberg and Stevens [GS93]
gave a proof of the assertion (1.2). The so-called Saint-Etienne theorem (formerly, a
conjecture of Manin) proved in [BSDGP96] shows that logp(qE) 6= 0. We therefore
conclude that (1.1) holds true when ran = 0. As far as the author is aware, nothing
substantial was known when ran > 0.

The conjecture of Birch and Swinnerton-Dyer (henceforth, abbreviated as BSD) pre-
dicts that the behavior of the Hasse-Weil L-function L(E, s) controls on the algebraic
side the (p-adic) Selmer group Selp(E/Q) (see §2.1.1 below for a definition of the
Selmer group). In particular, BSD predicts that ran = rankZp(Selp(E/Q)) and further
that the ran-th derivative of L(E, s) at s = 1 should be expressed (among other things)
in terms of a certain regulator calculated on Selp(E/Q).

The conjectured equality (1.1) suggests that, in order to formulate the p-adic ana-
log of BSD for Lp(E, s) at s = 1, one should replace the classical Selmer group with
an extended Selmer group so as to compensate for the (conjectural) gap between the
rank of Selp(E/Q) and ords=1 Lp(E, s). This has been carried out initially in [MTT86];
later Nekovář in [Nek06] defined his extended Selmer groups in a much more general
framework. The purpose of this article is to express the first (resp., second) order de-
rivative of Lp(E, s) at s = 1 when ran = 0 (resp., when ran = 1) in terms of Nekovářs’s
height pairings defined on his extended Selmer groups. When ran = 0, this allows us
(in a rather ad hoc manner) to interpret Kobayashi’s computations [Kob06] from the
perspective offered by Nekovář’s general theory. The main contribution of this article,
however, concerns the case ran = 1. In this case, we reduce the conjecture (1.1) to the
non-degeneracy of Nekovář’s p-adic height pairing.

Before we explain the results of the current article in detail, let us introduce some
notation. See also [Büy12] for an investigation along these lines when E is replaced by
Gm and when the relevant p-adic L-function is the Kubota-Leopoldt p-adic L-function.

Acknowledgements. I thank Denis Benois, Tadashi Ochiai and Karl Rubin for help-
ful correspondences and comments. I am also indebted to Masato Kurihara who sug-
gested the author to compare Kobayashi’s work with the results of [Büy12]. Special
thanks are due to Jan Nekovář for guiding the author through his pioneering work
[Nek06] and to Massimo Bertolini who has notified the author about the work of R.
Venerucci’s work on Perrin-Riou’s conjecture. The author was partially supported by
the Marie Curie grant EC-FP7 230668 and the TÜBİTAK grant 109T662.

1.1. Notation and Hypotheses. For any field K, fix a separable closure K of K and
set GK = Gal(K/K). Let Q∞/Q denote the cyclotomic Zp-extension of Q and let
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Γ = Gal(Q∞/Q). We write ρcyc for the cyclotomic character ρcyc : Γ
∼→ 1 + pZp. Let Qn

denote the unique sub-extension of Q∞/Q of degree pn over Q, i.e., the fixed field of
Γp

n . Let Φn be the completion of Qn at the unique prime of Qn above p, and set Φ∞ =
∪Φn, the cyclotomic Zp-extension of Qp. By slight abuse of notation Gal(Φ∞/Qp) will
be denoted by Γ as well. Let Γn = Γ/Γp

n
= Gal(Qn/Q). We fix a topological generator

γ of Γ. We also set Λ = Zp[[Γ]] as the cyclotomic Iwasawa algebra and J = ker(Λ→ Zp)
(where the arrow is the map induced from γ 7→ 1) as the augmentation ideal.

Let E/Q be an elliptic curve that has split multiplicative reduction at p. Let T =
Tp(E) denote its p-adic Tate module and set V = T ⊗Qp. We have an exact sequence

(1.3) 0 −→ F+
p T −→ T −→ F−p T −→ 0

of Zp[[GQp ]]-modules, where F+
p T
∼= Zp(1) and F−p T

∼= Zp. Let T ∗ = Hom(T,Zp(1))
(resp., V ∗ = T ∗ ⊗ Qp) and F±T ∗ = Hom(F∓p T,Zp(1)), so that T ∗ fits in an exact se-
quence of Zp[[GQp ]]-modules

0 −→ F+
p T

∗ −→ T ∗ −→ F−p T
∗ −→ 0.

Note that the Weil pairing shows that there is an isomorphism T ∼= T ∗ of Zp[[GQ]]-
modules. Let tan(E/Qp) denote the tangent space of E/Qp at the origin and consider
the Lie group exponential map

expE : tan(E/Qp) −→ E(Qp)⊗Qp.

Fix a minimal Weierstrass model of E and let ωE denote the corresponding holomor-
phic differential. The cotangent space cotan(E) is generated by the invariant differ-
ential ωE , let ω∗E ∈ tan(E/Qp) be the corresponding dual basis. Then there is a dual
exponential map

exp∗E : H1(Gp, V
∗) −→ cotan(E) = QpωE

and an induced map

exp∗ωE
= ω∗E ◦ exp∗E : H1(Gp, V

∗) −→ Qp.

Let Ep(s) = 1− p−s denote the Euler factor of L(E, s) at p and define

ρ : Γ
ρcyc // 1 + pZp

Ep(1)−1 logp // Zp

to be a fixed normalization of ρcyc.

1.2. Statements of the results. For X = V, V ∗, let H̃1
f (Q, X) denote Nekovář’s ex-

tended Selmer group attached to X and let

(1.4) 〈 , 〉Nek : H̃1
f (Q, V )⊗ H̃1

f (Q, V ∗) −→ Qp ⊗Zp J/J
2

denote Nekovář’s height pairing; see §2.1 below for the definitions of these objects.
Via the natural isomorphism J/J2 ∼→ Γ (induced from γ − 1 7→ γ), the pairing (1.4)
may be regarded to take values in Qp ⊗ Γ. Let 〈 , 〉Nek,ρ denote the compositum

〈 , 〉Nek,ρ : H̃1
f (Q, V )⊗ H̃1

f (Q, V ∗) −→ Qp ⊗Zp J/J
2 −→ Qp ⊗ Γ

ρ−→ Qp.

Let zKato
0 ∈ H1(Q, V ∗) denote Kato’s Beilinson element (whose basic properties are

recalled in §3.2 below) and set zKato = locp(zKato
0 ) to be the image of zKato

0 under the
localization map

locp : H1(Q, V ∗) −→ H1(Qp, V
∗).
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When ran = 0 or 1, one may define elements [−ordp(qE)−1] ∈ H̃1
f (Q, V ) and [exp∗ωE

(zKato)] ∈
H̃1
f (Q, V ∗) of the extended Selmer groups, as in §3.3 below. We are now ready to state

our first theorem.

Theorem A (Theorem 3.8 below). Suppose ran = 0 or 1. Then,

d

ds
Lp(E, s)

∣∣∣
s=1

=
〈
[−ordp(qE)−1], [exp∗ωE

(zKato)]
〉

Nek,ρ .

This result should be compared to Benois’ work in [Ben11a] and [Ben11b, Proposi-
tion 2.2.4].

Observe that when ran = 1, the theorem of Greenberg-Stevens shows that the left
hand side of the assertion in Theorem A equals 0. Kato’s reciprocity law proved in
[Kat04] shows that [exp∗ωE

(zKato)] = 0 as well. Hence, Theorem A says nothing when
ran = 1. In this case, we shall prove Theorem B below.

When ran ≤ 1, a conjecture of Perrin-Riou (labeled by Conjecture 3.4 below) predicts
that Kato’s class zKato

0 ∈ H1(Q, V ∗) is non-trivial. Shortly after posting the initial ver-
sion of this article, the author was notified that R. Venerucci has (partially) proved this
conjecture in his thesis∗, by comparing Kato’s class to a suitable Heegner point using
a result of Bertolini and Darmon. Let Φ be a certain extension of Qp (defined as in
§3.4) and set XΦ = X ⊗Qp Φ for X = V, V ∗. Let z̃Kato ∈ H̃1

f (Q, VΦ) ∼= H̃1
f (Q, V ∗Φ) (where

the identification is via the Weil pairing) denote the normalization of Kato’s element
zKato
0 given as in Definition 3.13. Finally, let γ0 ∈ Γ be a fixed generator satisfying

logp(ρcyc(γ0)) = p.

Theorem B (Theorem 3.18 below). Suppose ran = 1 Then,

1

2

(
d2

ds2
(Lp(E, s))

∣∣∣
s=1

)
⊗ (γ0 − 1) = 〈z̃Kato, z̃Kato〉Nek ,

where the equality takes place in Φ⊗Zp J/J
2.

Remark 1.1. The reader might be concerned that the right hand side in Theorem B is
independent of the choice of an isomorphism κ : Γ → 1 + pZp, whereas the choice of
the element γ0 ∈ Γ relies on the choice κ = ρcyc. Note, however, that the definition
of Lp(E, s) (c.f., §3 below) also relies on the cyclotomic character ρcyc and the element(
d2

ds2
(Lp(E, s))

∣∣
s=1

)
⊗ (γ0 − 1) would remain unchanged if ρcyc was to be replaced by

any other isomorphism κ : Γ→ 1 + pZp.

Remark 1.2. A result similar to Theorem B above has also been obtained indepen-
dently by R. Venerucci, see in particular Corollary 8.8 of his thesis [Ven13].

The key in the proofs of Theorems A and B is the description of the p-adicL-function
Lp(E, s) as the image of Kato’s Beilinson elements under the Coleman map (as as-
serted in (3.4)); an explicit description of the Coleman map itself in terms of local
units (c.f., §3.1) and a Rubin-style formula which reduces the calculation of Nekovář’s
heights to a computation of local Tate-pairings.

Theorem B has the following immediate corollary:

∗We thank M. Bertolini for bringing Venerucci’s work to our attention.



On Nekovář’s heights, exceptional zeros and a conjecture of Mazur-Tate-Teitelbaum 5

Corollary C (Corollary 3.19 below). Suppose ran = 1. If Nekovář’s p-adic height pairing is
non-degenerate, then the Mazur-Tate-Teitelbaum conjecture (1.1) is true.

LetA/Q be an elliptic curve with good ordinary reduction at p. When ords=1 L(A, s) =
1, one may compare the order of vanishing of the Mazur-Tate-Teitelbaum p-adic L-
function Lp(A, s) to that of the complex Hasse-Weil L-function L(A, s) (as in Corollary
C), by making use of the results of [Sch85] and [PR93b], along with the recent proof
of Skinner and Urban [SU10] of Mazur’s main conjecture. Note however that this
comparison would still require the non-degeneracy of a certain p-adic height pairing.
Corollary C in this sense extends the results Schneider and Perrin-Riou to the case
when the elliptic curve E in question has split multiplicative reduction at p (in which
case the p-adic L-function attached to E possesses an exceptional zero).

We briefly outline the plan of the paper. In §2.1, we introduce Nekovář’s Selmer
complexes (whose cohomology yields his extended Selmer groups) and discuss their
relation with various Selmer groups. In §2.2, we recall Nekovář’s definition of height
pairings in great generality. In §2.3, we carry out a local computation with the local
Tate pairing (still in great generality) which is essential for the height calculations
in §3. In §3.1 (resp., in §3.2), we define the Coleman map (resp., introduce Kato’s
Beilinson elements), which are used to define the elements of the extended Selmer
groups on which we shall compute Nekovář’s height pairing (and compare to the
derivatives of the p-adic L-function Lp(E, s)). Once these elements are defined, we
carry out the height computations in §3.3 in the case ran = 0 and in §3.4 in the case
ran = 1.

2. GENERALITIES ON NEKOVÁŘ’S THEORY OF SELMER COMPLEXES

Let G be a profinite group (given the profinite topology) and let R be a complete
discrete valuation ring with finite residue field of characteristic p. Let X be a free R-
module of finite type on which G acts continuously. In this section we very briefly
review Nekovář’s theory of Selmer complexes and his definition of extended Selmer
groups. Although the treatment in this section is far more general than what is needed
for the purposes of this paper (e.g., from §3.3 on, K will be Q and the Galois module
X considered below will be T or T ∗ (in degree zero)), it is still much less general than
what is covered in [Nek06].

The G-module X is admissible in the sense of [Nek06, §3.2] and we can talk about
the complex of continuous cochains C•(G,X) as in §3.4 of loc.cit. Let K be a number
field and for a finite set S of places ofK, let Sf denote the subset of finite places within
S. We denote by KS the maximal subextension of K/K which is unramified outside
S and set GK,S to be the Galois group Gal(KS/K). For all w ∈ Sf , we write Kw for the
completion ofK atw, andGw for its absolute Galois group. Whenever it is convenient,
we will identify Gw with a decomposition subgroup inside GK := Gal(K/K). We will
be interested in the cases whenG = GK,S orG = Gw and in the former case, S is chosen
to contain all primes above p, all primes at which G representation X is ramified and
all infinite places of K.

2.1. Selmer complexes. Classical Selmer groups are defined as a subgroup of ele-
ments of the global cohomology groupH1(GK,S, X) satisfying certain local conditions;
see [MR04, §2.1] for the most general definition. The main idea of [Nek06] is to impose
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local conditions on the level of complexes. We go over basics of Nekovář’s theory, for
details see [Nek06].

Definition 2.1. Local conditions on X are given by a collection ∆(X) = {∆w(X)}w∈Sf
,

where ∆w(X) stands for a morphism of complexes of R-modules

i+w(X) : U+
w −→ C•(Gw, X)

for each w ∈ Sf .

Also set

U−v (X) = Cone
(
U+
v (X)

−i+v−→ C•(Gv, X)

)
and

U±S (X) =
⊕
w∈Sf

U±w (X); i+S (X) = (i+w(X))w∈Sf
.

We also define
resSf

: C•(GK,S, X) −→
⊕
w∈Sf

C•(Gw, X)

as the canonical restriction morphism.

Definition 2.2. The Selmer complex associated with the choice of local conditions ∆(X)
on X is given by the complex

C̃•f (GK,S, X,∆(X)) := Cone(C•(GK,S, X)
⊕

U+
S (X)

resSf
−i+S (X)

//
⊕

w∈Sf
C•(Gw, X))[−1]

where [n] denotes a shift by n. The corresponding object in the derived category will
be denoted by R̃Γf (GK,S, X,∆(X)) and its cohomology by H̃ i

f (GK,S, X,∆(X)) (or sim-
ply by H̃ i

f (K,X) or by H̃ i
f (X) when there is no danger of confusion). The R-module

H̃1
f (X) will be called the extended Selmer group.
The object in the derived category corresponding to the complex C•(GK,S, X) will

be denoted by RΓ(GK,S, X).

2.1.1. Comparison with classical Selmer groups. For each w ∈ Sf , suppose that we are
given a submodule

H1
F(Kw, X) ⊂ H1(Kw, X).

The data which F encodes is called a Selmer structure on M . Starting with F , one
defines the Selmer group as

H1
F(K,X) := ker

H1(GK,S, X) −→
⊕
w∈Sf

H1(Kw, X)

H1
F(Kw, X)

 .

On the other hand, as explained in [Nek06, §6.1.3.1-2], there is an exact triangle

U−S (X)[−1] −→ R̃Γf (GK,S, X,∆(X)) −→ RΓ(GK,S, X) −→ U−S (X)

which gives rise to the following exact sequence in the level of cohomology that is
used to compare Nekovář’s extended Selmer groups to classical Selmer groups.
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Proposition 2.3 ([Nek06, §0.8.0 and §9.6]). For each i, the following sequence is exact:

. . . −→ H i−1(U−S (X)) −→ H̃ i
f (X) −→ H i(GK,S, X) −→ H i(U−S (X)) −→ . . .

When Nekovář’s Selmer complex is given by a choice of Greenberg local conditions,
the associated extended Selmer group compares to an appropriately defined Greenberg
Selmer groups), whose definitions we now recall. For further details, see [Gre89, Gre94,
Nek06].

Let Iw denote the inertia subgroup ofGw. Suppose we are given anR[[Gw]]-submodule
F+
wX of X for each place w|p of K, set F−wX = X/F−wX . Then Greenberg’s local condi-

tions (on the complex level, i.e., in the sense of [Nek06, §6]) are given by

U+
w =

 C•(Gw, F
+
wX) if w|p,

C•(Gw/Iw, X
Iw) if w - p

with the obvious choice of morphisms

i+w(X) : U+
w (X) −→ C•(Gw, X).

As in Definition 2.2, we then obtain a Selmer complex and an extended Selmer group,
which we denote by H̃1

f (X). Greenberg’s local conditions are the only type of local
conditions we will deal with from now on.

We now define the relevant Greenberg Selmer F on M :

Definition 2.4. The canonical Selmer structure F is given by

H1
F(Kw, X) =

 im (H1(Gw, F
+
wX)→ H1(Gw, X)) if w|p,

ker (H1(Gw, X)→ H1(Iw, X)) if w - p.

Remark 2.5. When X = V , it follows from [Rub00, Corollary 3.3(i)] and the proof of
[Rub00, Proposition 6.7] that H1

F(Kw, V ) = 0 for every w - p.

Associated to the Selmer structure F , we have the following Selmer group (which
is called the strict Selmer group in [Nek06, §9.6.1] and denoted by Sstr

X (K)):

(2.1) H1
F(K,X) = ker

H1(GK,S, X) −→
⊕
w|p

H1(Gw, F
−
wX)⊕

⊕
w-p

H1(Iw, X)

 .

Proposition 2.3 implies directly that:

Proposition 2.6. The following sequence is exact:

H0(GK,S, X) −→
⊕
w|p

H0(Gw, F
−
wX) −→ H̃1

f (X) −→ H1
F(K,X) −→ 0.

When the coefficient ringR is an integral domain, we let F to be its field of fractions.
Set XF = X ⊗F and F±wXF = (F±wX)⊗F . The true Selmer group Sel(K,X) is defined
as

Sel(K,X) = ker

H1(GK,S, X) −→
⊕
w|p

H1(Iw, F
−
wXF )⊕

⊕
w-p

H1(Iw, XF )

 .
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We also define H1
F(K,XF ) = H1

F(K,X)⊗ F and Sel(K,XF ) = Sel(K,X)⊗ F .

Remark 2.7. Note that in case H0(Gw, F
−
wX) = 0 for all w|p, then the extended

Selmer group H̃1
f (X) coincides with the Selmer group H1

F(K,X). However, if some
H0(Gw, F

−
wX) 6= 0, then H̃1

f (X) is strictly larger than H1
F(K,X) (under the assump-

tion that XGK=0, say). This is the main feature of Nekovář’s Selmer complexes: They
reflect the existence of exceptional zeros, unlike classical Selmer groups.

Remark 2.8. In this remark, let X = T , XF = V and K = Q. It is well-known (c.f.,
[CG96, Gre99]) that the Selmer group H1

F(Q, T ) compares to the true Selmer group
Selp(E/Q) = Sel(Q, T ) by the following exact sequence:

0 −→ H1
F(Q, T ) −→ Selp(E/Q) −→ H1(Gp, F

−
p T )tor ⊕

 ⊕
`∈Sf−{p}

t`


where t` = ker(H1(G`, T )→ H1(I`, V ))

/
ker(H1(G`, T )→ H1(I`, T )). In our setting, the

Zp-module H1(Gp, F
−
p T ) = Hom(Gp,Zp) is torsion free and the order of t` equals the

p-part of the Tamagawa factor at `. We therefore conclude at once that H1
F(Q, T ) is a

subgroup of Selp(E/Q) of finite index, and further infer that:
• H1

F(Q, T ) = Selp(E/Q) if

(i) p is prime to all Tamagawa factors of E, or if,
(ii) Selp(E/Q) = 0.

• In general, H1
F(Q, V ) = Selp(E/Q)⊗Qp .

2.2. Height pairings. We now recall Nekovář’s definition of height pairings on his
extended Selmer groups. All the references in this section are to [Nek06, §11] unless
otherwise stated. Until the end, we assume that K = Q.

Let X∗ = Hom(X,R)(1) (in Nekovář’s language this is D(X)(1), the Grothendieck
dual ofX) andX∗F = Hom(XF , F )(1). Let Γ be the Galois group Gal(Q∞/Q). Nekovář’s
height pairing

〈 , 〉Nek : H̃1
f (X)⊗R H̃1

f (X∗) // R⊗Zp Γ

is defined in two steps:

(i) Apply the Bockstein morphism

β : R̃Γf (X) // R̃Γf (X)[1]⊗Zp Γ

See [Nek06, §11.1.3] for the original definition of β. Let β1 denote the map
induced on the level of cohomology:

β1 : H̃1
f (X) −→ H̃2

f (X)⊗Zp Γ.

(ii) Use the Poitou-Tate global duality pairing

〈 , 〉PT : H̃2
f (X)⊗R H̃1

f (X∗) −→ R

on the image of β1 inside of H̃2
f (X) ⊗ Γ. Here the global pairing comes from

summing up the invariants of the local cup product pairing, see [Nek06, §6.3]
for more details.
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Any choice of a homomorphism κ : Γ→ F induces an F -valued height pairing

〈 , 〉Nek,κ : H̃1
f (XF )⊗R H̃1

f (X∗F ) −→ F .

2.3. Computations with the local Tate pairing. For X and X∗ as above, we set K =
Q and let 〈 , 〉Tate : H1(Φn, X) ⊗ H1(Φn, X

∗) → R denote the local Tate-pairing. Fix
elements ξ = {ξn} ∈ lim←−H

1(Φn, X) and z = {zn} ∈ lim←−H
1(Φn, X

∗(1)) and define

L(n)
ξ =

∑
τ∈Γn

〈ξn, zτn〉Tate · τ ∈ R[Γn] .

The elements L(n)
ξ are compatible with respect to restriction maps R[Γn] → R[Γm] for

m ≥ n and we may therefore define Lξ = limL(n)
ξ ∈ R[[Γ]].

Definition 2.9. Suppose ξ0 = 0. In this case, we define

Derρcyc(Lξ)(z0) := lim
n→∞

∑
τ∈Γn

logp(ρcyc(τ
−1)) · 〈ξτn, zn〉Tate

= − lim
n→∞

∑
τ∈Γn

logp(ρcyc(τ)) · 〈ξτn, zn〉Tate.

Here we make sense of ρcyc(τ) as follows for τ ∈ Γn. Choose any lift τ̃ ∈ Γ of τ and
set ρcyc(τ) = ρcyc(τ̃). The value of logp(ρcyc(τ)) is therefore well-defined modulo pn, but
the limit above clearly does not depend on the choice of lifts τ̃ . See [Büy12, Lemma
5.9] for a proof that this limit exists.

Lemma 2.10. Suppose ξ0 = 0. There is an element ξ′ = {ξ′n} ∈ lim←−H
1(Φn, X) such that

ξ = (γ−1)
logp(ρcyc(γ))

·ξ′. Furthermore, ξ′ is uniquely determined when the Λ-module lim←−H
1(Φn, X)

has no (γ − 1)-torsion.

Proof. This follows at once from the exactness of the sequence

0 −→ H1(Qp, X ⊗ Λ)[γ − 1] −→ H1(Qp, X ⊗ Λ)
γ−1−→ H1(Qp, X ⊗ Λ) −→ H1(Qp, T )

and using the identification lim←−H
1(Φn, X) = H1(Qp, X⊗Λ); whereH1(Qp, X⊗Λ)[γ−1]

stands for the (γ − 1)-torsion submodule of H1(Qp, X ⊗ Λ). �

Note that ξ′0 does not depend on the choice of γ.

Lemma 2.11. Suppose ξ0 = 0 and let ξ′ = {ξ′n} is the element whose existence was proved in
Lemma 2.10. Then Derρcyc(Lξ)(z0) = 〈ξ′0, z0〉Tate.
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Proof. Observe that

logp(ρcyc(γ))
∑
τ∈Γn

logp(ρcyc(τ
−1)) · ξτn =

∑
τ∈Γn

logp(ρcyc(τ
−1)) · (ξ′n)τ(γ−1)

=
∑
τ∈Γn

(
logp(ρcyc(τ

−1))(ξ′n)τγ − logp(ρcyc(τ
−1))(ξ′n)τ

)
=
∑
σ∈Γn

(
logp(ρcyc(σ

−1))(ξ′n)σ + logp(ρcyc(γ))(ξ′n)σ
)

−
∑
τ∈Γn

logp(ρcyc(τ
−1))(ξ′n)τ

= logp(ρcyc(γ))
∑
σ∈Γn

(ξ′n)σ,

where all the equalities take place in R/pnR, and the third equality is obtained by
setting σ = τγ. This shows that

∑
τ∈Γn

logp(ρcyc(τ
−1)) · ξτn =

∑
σ∈Γn

(ξ′n)σ (in R/pn−1R). By

the commutativity of the diagram

H1(Φn, X) × H1(Φn, X
∗)

cor

��

〈,〉Tate // R

H1(Qp, X)

res

OO

× H1(Qp, X
∗)
〈,〉Tate // R

and the fact that both {ξ′n} and {zn} are norm-coherent, we conclude that〈∑
τ∈Γn

logp(ρcyc(τ
−1)) · ξτn , zn

〉
Tate

= 〈ξ′0, z0〉Tate

in R/pn−1R. Proof of the Lemma follows by letting n→∞. �

Definition 2.12. Suppose ξ0 = 0 and let ξ′ = {ξ′n} be as above. Define

L′ξ := Lξ′ =

{∑
τ∈Γn

〈ξ′n, zτn〉Tate · τ

}
∈ Λ.

Observe that this element depends both on the choice of γ and the choice of ξ′.

Let J = ker(Λ→ Zp) denote the augmentation ideal. We have an isomorphism

R⊗Zp J/J
2 ∼−→ R⊗Zp Γ

∼−→ R

given by 1⊗(γ−1 mod J2) 7→ 1
p

logp(ρcyc(γ)). Let 1⊗(γ0−1) ∈ J/J2 denote the image
of 1 ∈ R under the inverse of this composition.

Lemma 2.13.
(γ − 1)

logp(ρcyc(γ))
L′ξ ≡ Lξ mod J2.

Proof. The proof of this is identical to the proof of Lemma 2.11. �
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The exact sequence

(2.2) 0 −→ X ⊗ J/J2 −→ X ⊗ Λ/J2 j−→ X ⊗ J/J2 −→ 0

where j stands for the map induced from multiplication by (γ−1)/ logp(ρcyc(γ)). Con-
sider the commutative diagram

H1(Qp, X ⊗ Λ)
j //

red
��

J ·H1(Qp, X ⊗ Λ)

D
��

H1(Qp, X ⊗ Λ/J2)
j // H1(Qp, X ⊗ J/J2)

where the vertical map on the left is the reduction map and the lower horizontal map
is induced from (2.2). The map D is obtained by completing the square; note that it is
well-defined as when x ∈ H1(Qp, X⊗Λ)[γ−1], one has (γ−1)·red(x) = 0. If ξ0 = 0, then
as explained in Lemma 2.10, the element ξ is in the image of the mapH1(Qp, X⊗Λ)

j−→
H1(Qp, X⊗Λ) and therefore one can define an elementD(ξ) ∈ H1(Qp, X⊗J/J2). Since
the Gp-action on J/J2 is trivial, we have H1(Qp, X ⊗ J/J2) = H1(Qp, X) ⊗ J/J2. In
case H1(Qp, X ⊗ Λ)[γ − 1] = 0, observe that D(ξ) = ξ′0 ⊗ (γ0 − 1) where ξ′0 is as in
Lemma 2.11. If we let

〈 , 〉J/J2 :
(
H1(Qp, X)⊗ J/J2

)
⊗H1(Qp, X

∗) −→ R⊗ J/J2

denote the pairing induced from the local Tate pairing, we also have (compare to
Lemma 2.11)

(2.3) Derρcyc(Lξ)(z0)⊗ (γ0 − 1) = 〈D(ξ), z0〉J/J2 ∈ R⊗ J/J2.

3. THE HEIGHT FORMULAS

Fix a generator {ζpn} of Zp(1) = lim←−nµµµpn . Let E/Q be an elliptic curve that has split
multiplicative reduction at p. Then E is a Tate curve at p, i.e., it admits a uniformiza-
tion

C×p /qZE
∼−→ E(Cp)

for some qE ∈ Q×p . The following theorem that was formerly known as Manin’s con-
jecture was proved in [BSDGP96]:

Theorem 3.1 (Saint-Etienne Theorem). logp(qE) 6= 0.

Let L(E/Q, s) denote the Hasse-Weil L-function attached to E. It is known thanks
to [Wil95, BCDT01] that L(E/Q, s) is an entire function, let ran := ords=1L(E/Q, s) be
the order of vanishing at s = 1.

Attached to E, there is an element LE ∈ Λ (the Mazur-Tate-Teitelbaum p-adic L-
function) constructed in [MTT86] and characterized by the interpolation formula

χ(LE) = τ(χ)
L(E,χ−1, 1)

Ω+
E

for every non-trivial character χ of Γ of finite order, where τ(χ) =
∑

δ∈∆n
χ(δ)ζδpn+1 is

the Gauss sum and where n is the smallest integer such that χ factors through ∆n :=
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Γ/Γp
n . Furthermore, the Mazur-Tate-Teitelbaum’s p-adic L-function vanishes at the

trivial character 111, namely, 111(LE) = 0. Setting

Lp(E, s) := ρs−1
cyc (LE) ,

we conclude in this case that Lp(E, 1) = 0. A theorem of Greenberg-Stevens [GS93]
expresses the derivative of the p-adic L-function Lp(E, s) at s = 1 in terms of the L-
value:

(3.1)
d

ds
Lp(E, s)

∣∣∣
s=1

=
logp(qE)

ordp(qE)
L(E, 1)/Ω+

E.

We therefore conclude when ran = 0 or 1, the order of vanishing of Lp(E, s) at s = 1 is
at least 1+ran. Our goal is to express d

ds
Lp(E, s)

∣∣
s=1

(resp., d2

ds2
Lp(E, s)

∣∣
s=1

) when ran = 0
(resp., when ran = 1) in terms of Nekovář’s height pairings, evaluated on elements
obtained from Kato’s Euler system and the Coleman map, whose basic properties we
outline below.

Remark 3.2. By a slight abuse, we will denote the measure on Γ associated to an
element L ∈ Λ also by L. Then for any continuous character ψ : Γ → Cp, we will
have

∫
Γ
ψ · dL = ψ(L). For example, we will sometimes prefer to write Lp(E, s) =∫

Γ
ρs−1

cyc · dLE .

3.1. The (explicit) Coleman map for a Tate Curve. We review here the definition of
the Coleman map following [Rub98] and [Kob03, Section 8]. Let On denote the ring
of integers of Φn and let mn denote the maximal ideal of On and πn ∈ mn a fixed
uniformizer. Denote 1-units of On by U1

n. For a fixed generator {ζpn} of Zp(1), one
constructs elements cn ∈ Ĝm(mn) so that the elements dn := 1 + cn ∈ U1

n are norm
compatible as n varies and dn generates (U1

n)N=1 where N stands for the absolute norm
from Φn to Qp. Let

d∞ = {dn} ∈ lim←−Φ×n ⊗̂Zp ∼= lim←−H
1(Φn,Zp(1)) ∼= H1(Qp,Zp(1)⊗ Λ),

where the first isomorphism hollows from Kummer theory and second from [Col98,
Proposition II.1.1]. As N(dn) = 1 by construction, it follows that d∞ is in the kernel of
the augmentation map:

d∞ ∈ ker(H1(Qp,Zp(1)⊗ Λ) −→ H1(Qp,Zp(1))) = (γ − 1)H1(Qp,Zp(1)⊗ Λ).

Let

(3.2) C∞ = {Cn} ∈ H1(Qp,Zp(1)⊗ Λ) = lim←−Φ×n ⊗̂Zp

be the element chosen such that

d∞ =
(γ − 1)

logp(ρcyc(γ))
· C∞ .

It is straightforward to verify that the element C0 does not depend on the choice of γ.
As we have assumed the elliptic curve E has split multiplicative reduction mod p, it
follows that E is locally a Tate curve, namely that E

/Qp
= Eq where

Eq : y2 + xy = x3 + a4(q)x+ a6(q)
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with q = qE ∈ Q×p satisfying ordp(q) > 0 and

a4(q) = −
∑
n≥1

n3qn

1− qn
, a6(q) = − 5

12

∑
n≥1

n3qn

1− qn
+

7

12

∑
n≥1

n5qn

1− qn
.

Then Eq admits a Tate uniformization

φ : C×p /qZ
∼−→ Eq(Cp).

This isomorphism induces an isomorphism of formal groups

φ̂ : Ĝm
∼−→ Ê.

Via this isomorphism, we regard the element cn ∈ Ĝm(mn) as an element of Ê(mn), and
by the Kummer map also an element of H1(Φn, T ). Using the local duality pairing

〈 , 〉Tate,E : H1(Φn, T )×H1(Φn, T
∗) −→ Zp,

we obtain Zp[Γn]-linear maps

Coln : H1(Φn, T
∗)→ Zp[Γn]

z 7→
∑
τ∈Γn

〈cτn, z〉Tate,E · τ

which are compatible as n varies with respect to corestriction maps and natural pro-
jections. Hence these maps yield in the limit a Λ-equivariant map

Col : lim←−H
1(Φn, T

∗) ∼= H1(Qp, T
∗ ⊗ Λ) −→ Λ.

As explained in [Kob06, §4],

(3.3) Coln(z) =
∑
τ∈Γ

〈dτn, locsp(zn)〉Tate · τ

where locsp : H1(Φn, T
∗) → H1(Φn, F

−
p T

∗) is the projection on to the singular quotient
so that we obtain a map (which we still denote by Col) in the limit

Col : lim←−H
1(Φn, F

−
p T

∗) ∼= H1(Qp, F
−
p T

∗ ⊗ Λ) −→ Λ.

3.2. Kato’s Beilinson elements. Given an elliptic curve E, Kato has constructed an
element

zKato
∞ = {zKato

n } ∈ lim←−H
1(Qn, T

∗)⊗Qp = H1(Q, T ∗ ⊗ Λ)⊗Qp

which has the property that

(3.4) Col(locp(zKato
∞ )) = LE,

where locp : H1(Qn,−) → H1(Φn,−) is the localization at p. For simplicity, we set
zKato
n = locp(zKato

n ) and write zKato in place of zKato
0 ∈ H1(Qp, T

∗) ⊗ Qp. For each n ≥ 0,
let

locsp : H1(Φn, T
∗)⊗Qp −→ H1(Φn, F

−
p T

∗)⊗Qp

denote the natural projection map.

Remark 3.3. It may be proved that Kato’s Beilinson elements are locally integral,
namely that

locp(zKato
n ) ∈ H1(Φn, T

∗).

Furthermore, in case E(Q)[p] = 0, Kato’s elements are globally integral as well, i.e.,

zKato
∞ = {zKato

n } ∈ H1(Q, T ∗ ⊗ Λ).
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Perrin-Riou in [PR93a, §3.3.2] proposes the following:

Conjecture 3.4. The element zKato
0 ∈ H1(Q, T ∗)⊗Qp is non-trivial iff ords=1 L(E, s) ≤ 1.

In this article, we need the “if" part of this conjecture and this has been established
by Venerucci in his forthcoming thesis:

Theorem 3.5 (Venerucci). If ords=1 L(E, s) ≤ 1, then the element zKato
0 ∈ H1(Q, T ∗)⊗Qp

is non-trivial.

3.3. The case ran = 0.

Proposition 3.6 (Kato, Kolyvagin). Suppose L(E, 1) 6= 0. Then
(i) Selp(E/Q) is finite,

(ii) H1
F(Q, V ) = 0.

Using Proposition 2.6, we obtain isomorphisms

(3.5) H0(Gp, F
−
p V )

∼−→ H̃1
f (V )

(3.6) H0(Gp, F
−
p V

∗)
∼−→ H̃1

f (V ∗)

Let α ∈ H0(Gp, F
−
p V ) and α∗ ∈ H0(Gp, F

−
p V

∗). Denote their respective images under
the isomorphisms (3.5) and (3.6) by [α] and [α∗]. The exact sequence (1.3) yields an
injection

(3.7) ∂p : H0(Gp, F
−
p V ) ↪→ H1(Gp, F

+
p V ).

Let z : GQ � Γ be the tautological homomorphism. Letting GQ act trivially on Γ, one
may view z as an element of H1(Q,Γ) = Hom(GQ,Γ). Its localization zp ∈ H1(Gp,Γ)
also corresponds to the tautological homomorphism Gp � Γ, where we now view Γ
as the decomposition group of p inside Gal(Q∞/Q).

Proposition 3.7. Let zp ∪ α∗p ∈ H1(Gp,Qp ⊗ Γ) = H1(Gp,Qp)⊗ Γ be the cup-product of zp
and α∗p . Then we have the following equality in Qp ⊗ Γ:

〈[α], [α∗]〉Nek = 〈∂p(αp),−zp ∪ α∗p〉Tate .

Proof. This follows from [Nek06, Corollary 11.4.7], along with the remark 11.3.5.3 of
loc.cit. �

Recall Kato’s local element zKato ∈ H1(Qp, T
∗) and the element C0 ∈ H1(Gp, F

+
p T ) ∼=

Q̂×p obtained using the explicit description of Coleman map. The first part of the Theo-
rem below should be thought of as a “Rubin-style formula", although it doesn’t seem
to follow from Nekovář’s version [Nek06, 11.5.11] of it. The second part expresses
the leading coefficient of the p-adic L-function in terms of Nekovář’s height pairing.
Recall the homomorphism ρ : Γ→ Zp , which is the compositum of the maps

ρ : Γ
ρcyc // 1 + pZp

Ep(1)−1 logp // Zp ,

where Ep(s) = 1− p−s is the Euler factor at p.

Theorem 3.8. (i)
〈
[ordp(qE)−1], [exp∗ωE

(zKato)]
〉

Nek,ρ = 〈C0, locsp(zKato)〉Tate .

(ii) d
ds
Lp(E, s)

∣∣∣
s=1

=
〈
[−ordp(qE)−1], [exp∗ωE

(zKato)]
〉

Nek,ρ.
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Proof. Write q = qE = pordp(q) · uq and let χp be the compositum

χp : Q̂×p
rec−→ Gab

p −→ Γ
ρ−→ Zp .

Since the image of 1 ∈ Qp = H0(Gp, F
−
p V ) under (3.7) is q, it follows from Prop. 3.7

that 〈
[ordp(q)−1], [exp∗ωE

(zKato)]
〉

Nek,ρ =
〈
qordp(q)−1

,− exp∗ωE
(zKato) · χp

〉
Tate

= −ordp(q)−1 exp∗ωE
(zKato) 〈uq, χp〉Tate(3.8)

= −(1− 1/p) ordp(q)−1 logp(uq) exp∗ωE
(zKato)(3.9)

= 〈C0, locsp(z
Kato)〉Tate(3.10)

where the equality (3.8) is because the homomorphism zp factors through the inertia
subgroup of Gab

p , (3.9) follows thanks to our normalization of Nekovář’s height and
(3.10) is the main calculation carried out in [Kob06, §4]. This completes the proof of
(i).

To prove (ii), observe that d
ds
ρs−1

cyc = logp ρcyc · ρs−1
cyc , hence

d

ds
Lp(E, s)

∣∣∣
s=1

=

∫
γ

logp ρcyc · dLE

= lim
n→∞

∑
τ∈Γn

logp ρcyc(τ)
〈
dτn , locsp(z

Kato
∞ )

〉
Tate

= lim
n→∞

〈∑
τ∈Γn

logp ρcyc(τ) · dτn , locsp(z
Kato
∞ )

〉
Tate

where the second equality follows from the explicit description of the Coleman map
(essentially (3.3), see also [Kob06, p. 572]). By Lemma 2.11 applied with X = F+

p T ,
X∗ = F−p T

∗, ξ = d∞ (so that ξ′0 = C0) and z = locsp(zKato
∞ ),

lim
n→∞

〈∑
τ∈Γn

logp ρcyc(τ) · dτn , locsp(z
Kato
∞ )

〉
Tate

= −〈C0, locsp(z
Kato
0 )〉Tate

and (ii) now follows from (i). �

3.4. The case ran = 1. Until the end of this article, suppose that ran = 1. Assume in
addition that E(Q)[p] = 0. As we have noted in Remark 3.3, this assumption implies
that Kato’s elements are integral:

zKato
∞ = {zKato

n } ∈ H1(Q, T ⊗ Λ).

Note that we had introduced Kato’s elements zKato
0 withinH1(Q, T ∗). Using the natural

isomorphism T ∼= T ∗, we may regard Kato’s elements as cohomology classes for T as
well. Recall the localization of Kato’s element zKato := locp(zKato

0 ) ∈ H1(Qp, T ).

Proposition 3.9. Under the running assumptions, zKato 6= 0.

Proof. Assume on the contrary that

(3.11) zKato = locp(zKato
0 ) = 0.

Let Fstr denote the Selmer structure on T given by

• HFstr(Q`, T ) = HF(Q`, T ), if ` 6= p,
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• HFstr(Qp, T ) = 0.

so that (3.11) amounts to saying zKato
0 ∈ HFstr(Q, T ). As zKato

0 is non-torsion thanks to
our running assumptions and Theorem 3.5, it follows that rankZp(H1

Fstr
(Q, T )) ≥ 1.

Let Fstr denote also the propagation of the Selmer structure (in the sense of [MR04])
to T/pnT . For any positive integer n, identify the quotient T/pnT with E[pn]. By
[MR04, Lemma 3.7.1], we have an injection

HFstr(Q, T )/pnHFstr(Q, T ) ↪→ HFstr(Q, T/pnT ) = HFstr(Q, E[pn])

induced from the projection T → T/pnT . This shows that

(3.12) lengthZp
(HFstr(Q, E[pn])) ≥ n.

Let now Fcan denote the canonical Selmer structure on T , given by

• HFcan(Q`, T ) = HF(Q`, T ), if ` 6= p,
• HFcan(Qp, T ) = H1(Qp, T ).

Let F∗can denote the dual Selmer structure on Hom(T,µµµp∞) ∼= E[p∞], where the iso-
morphism is obtained via the Weil-pairing. The propagation of F∗can on E[p∞] to its
submodule E[pn] will also be denoted by F∗can. It follows from [Rub00, Lemma I.3.8(i)]
(together with the discussion in [MR04, §6.2]) that we have an inclusion

HFstr(Q`, E[pn]) ⊂ HF∗can(Q`, E[pn])

for every `, which in turn shows that together with (3.12) that

(3.13) lengthZp
(HF∗can(Q, E[pn])) ≥ n.

On the other hand, as zKato
0 6= 0, it follows from [MR04, Cor. 5.2.13] thatHF∗can(Q, E[p∞])

is finite. This however shows that the length of

HF∗can(Q, E[pn]) ∼= HF∗can(Q, E[p∞])[pn]

(where the isomorphism is thanks to [MR04, Lemma 3.5.3], which holds true here
owing to our assumption that E(Q)[p] = 0) is bounded independently of n. This
contradicts (3.13) and shows that our assumption (3.11) is wrong. �

Remark 3.10. In this remark we elaborate on the “only if” part of Conjecture 3.4.
Suppose zKato

0 ∈ H1(Q, T ∗) is non-torsion‡. It follows by the theory of Euler systems
that the strict Selmer group

H1
F∗can

(Q, V/T ) := ker(H1
F(Q, V/T ) −→ H1(Qp, V/T ))

is finite. It then follows from global duality (c.f., Theorem 5.2.15 and Corollary 5.2.6 of
[MR04]) that

(3.14) rankZp(H1
Fcan

(Q, T ∗)) = dimQp(V ∗)− = 1,

where (V ∗)− stands for the −1-eigenspace of V ∗ of a fixed complex conjugation in
GQ. This in turn shows that rankZp(Sel(Q, T ∗)) ≤ 1. The conjecture of Birch and
Swinnerton-Dyer then predicts the assertion of Conjecture 3.4.

Suppose now that rankZp(Sel(Q, T ∗)) = 0. As explained in (3.14), the Zp-module
H1
Fcan

(Q, T ∗) is of rank 1 and that locsp(zKato
0 ) 6= 0. Kato’s reciprocity law implies in this

case that L(E, 1) 6= 0, unconditionally.
‡Under the assumption that E(Q)[p] = 0, the Zp-module H1(Q, T ∗) is torsion-free. Hence, our assump-
tion amounts to asking that zKato

0 6= 0
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In the case rankZp(Sel(Q, T ∗)) = 1, unfortunately we are not able to go this far. As
rankZp(Sel(Q, T ∗)) = 1, we conclude by (3.14) that H1

Fcan
(Q, T ∗)⊗Qp = Sel(Q, T ∗)⊗Qp

and hence zKato
0 ∈ Sel(Q, T ∗) ⊗ Qp. One would then expect to relate the height of zKato

0

to L′(E, 1)† and conclude this way that L′(E, 1) 6= 0. This, however, seems untractable
at this stage§. When p is a good-ordinary prime, Perrin-Riou in [PR93a] shows that
the p-adic height of zKato

0 is related to the derivative of the Mazur-Tate-Teitelbaum p-
adic L-function. Our Theorem 3.18 extends this to the case where p is a prime of split
multiplicative reduction.

Observe that locsp(zKato
0 ) = 0 as we have assumed ords=1 L(E, s) = 1. We therefore

conclude that locp(zKato
0 ) = zKato ∈ H1

f (Qp, T ). Consider the diagram with exact rows:

H0(Qp, F
−
p T )

∂ // H1(Qp, F
+
p T )

φ // H1(Qp, T )

Zp
∂

//

∼

OO

Q̂×p φ
//

∼

OO

Q̂×p /q
Zp

E

?�
ψ

OO

We note that ∂(1) = qE and im(φ) = E(Qp)⊗ Zp = H1
f (Qp, T ) is the isomorphic image

of Q̂×p /q
Zp

E under the map ψ. Let C0 ∈ Q̂×p be the explicit element defined as in (3.2).

Lemma 3.11. For any α ∈ Zp , logp(C
α
0 ) = 0.

Proof. As above, let U1
n denote the 1-units of the extension Φn and (U1

n)N=1 ⊂ U1
n be the

submodule of absolute norm 1. Let πn ∈ Φn be the uniformizer defined as in [Kob06,
pp. 570], so that the collection {πn} is norm-compatible. It follows from the discussion
in [Kob06, pp. 570] that Cn = πenun for some e ∈ Zp and un ∈ (U1

n)N=1, where e is
explicitly determined in Proposition 2.2 of loc.cit. This shows that Cα0 = N(Cn)α = pαe.

�

As the Qp-vector spaceH1
f (Qp, T )⊗Qp is of dimension one, we define λ ∈ Qp (which

we call the local normalization factor) to be the unique element which verifies

(3.15) ψ ◦ φ(C0) = λ · zKato

inside of the isomorphic image H1
f (Qp, V ) of H1(Qp, F

+
p T )⊗Qp under φ.

Lemma 3.12. The normalization factor λ is non-zero.

Proof. It follows from Theorem 3.1 and Lemma 3.11 that φ(C0) ∈ Q̂×p /q
Zp

E is non-torsion.
The proof the lemma now follows as the map ψ is injective. �

Let Φ = Qp(
√
λ) and letO be the ring of integers of Φ. ForX = T, V, T ∗ or V ∗, define

XΦ = X ⊗Zp O.

Definition 3.13. We define the normalization of Kato’s element to be

z̃Kato = λ1/2 · zKato
0 ∈ Sel(Q, VΦ).

†As a matter of fact, as Sel(Q, T ∗) is rank one, one would expect to relate zKato
0 to Heegner points.

This indeed is the content of Perrin-Riou’s conjecture. The Gross-Zagier formula would then express
L′(E, 1) in terms of the height of zKato

0 .
§See, however, Venerucci’s thesis for progress in this direction.
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Set Ξn = locsp(zKato
n ) ∈ H1(Φn, F

−
p T

∗) and Ξ = {Ξn} ∈ H1(Qp, F
−
p T

∗ ⊗ Λ). Note that
we are once again implicitly identifying T with T ∗. As our running assumptions show
that Ξ0 = 0, this allows us to choose Ξ′ = {Ξ′n} ∈ H1(Qp, F

−
p T

∗ ⊗ Λ) as in Lemma 2.10
(applied with X = F−p T

∗).

Definition 3.14. Let µE ∈ Λ be the element defined as

µE =

{∑
τ∈Γn

〈Cτn,Ξ′n〉Tate · τ

}
∈ lim←−Zp[Γn] .

Although µE depends on the choice of Ξ′ and γ, the value

(3.16)
∫

Γ

111 · dµE = 111(µE) = 〈C0,Ξ
′
0〉Tate

does not, as shown by Lemma 2.11.

Recall the augmentation ideal J = ker(Λ→ Zp).

Proposition 3.15.
(γ − 1)2

logp(ρcyc(γ))2
µE ≡ LE mod J3.

Proof. Let L′E ∈ Λ be the element

L′E =

{∑
τ∈Γn

〈Cτn,Ξn〉Tate · τ

}

and recall that LE =

{∑
τ∈Γn

〈dτn,Ξn〉Tate · τ

}
, as explained in [Kob06, §4]. Lemma 2.13

shows that
(γ − 1)

logp(ρcyc(γ))
L′E ≡ LE mod J2,

and also that
(γ − 1)

logp(ρcyc(γ))
µE ≡ L′E mod J2.

�

Recall Lp(E, s) = ρs−1
cyc (LE) and the generator γ0 ∈ Γ that satisfies logp(ρcyc(γ0)) = p.

Proposition 3.16.
d2

ds2
(Lp(E, s))

∣∣
s=1

= 2 · 〈C0,Ξ
′
0〉Tate.

Proof. This follows from Proposition 3.15 and (3.16). �

Remark 3.17. The equality proved in Proposition 3.16 should be considered as the
extension of the displayed equality (2) in [Kob06, p. 574], to the case ran = 1.

Theorem 3.18. We have the following equality in Φ⊗Zp J/J
2:

1

2

(
d2

ds2
(Lp(E, s))

∣∣∣
s=1

)
⊗ (γ0 − 1) = 〈z̃Kato, z̃Kato〉Nek .
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Proof. Recall that Ξn := locsp(zKato
n ) and Ξ := {ξn} ∈ H1(Qp, F

−
p T

∗ ⊗ Λ). As we have
already observed above, Ξ is in the kernel of the augmentation map

H1(Qp, F
−
p T

∗ ⊗ Λ) −→ H1(Qp, F
−
p T

∗)

and we therefore have an element (thanks to the discussion in §2.3)

D(Ξ) ∈ H1(Qp, F
−
p T

∗)⊗ J/J2.

It follows from [Nek06, Proposition 11.5.11] † and Remark 2.5 that

〈λ · zKato, zKato〉Nek = −〈C0,D(Ξ)〉J/J2 ,(3.17)

where the pairing on the right hand is the Φ⊗ J/J2-valued local Tate pairing

〈 , 〉J/J2 : H1(Qp, F
+
p V )⊗

(
H1(Qp, F

−
p V

∗)⊗ J/J2
)
−→ J/J2 .

Furthermore, we have

〈C0,D(Ξ)〉J/J2 = −Derρcyc(LΞ)(C0)⊗ (γ0 − 1)(3.18)

= 〈C0,Ξ
′
0〉Tate ⊗ (γ0 − 1)(3.19)

=
1

2

(
d2

ds2
(Lp(E, s))

∣∣∣
s=1

)
⊗ (γ0 − 1)(3.20)

where (3.18) follows from (2.3) (applied with the choices X = F−p T
∗, X∗ = F+

p T and
Ξ = ξ, z0 = C0); the equality (3.19) from Lemma 2.11 and (3.20) from Proposition 3.16.
The proof now follows from (3.17) and the Φ-linearity of Nekovář’s height pairing. �

Corollary 3.19. Assuming Nekovář’s height pairing is non-degenerate,

ords=1 Lp(E, s) = 1 + ran

when ran = 0, 1.

Proof. The assertion is due to Greenberg-Stevens [GS93] (without the assumption on
Nekovář’s heights) when ran = 0. The case ran = 1 follows from Theorem 3.18 and
[Nek06, Proposition 11.4.9], which reduces the non-degeneracy of the height pairing
〈 , 〉Nek to the non-degeneracy of its restriction to Selp(Q, V )⊗ Selp(Q, V ∗), where both
Selp(Q, V ) and Selp(Q, V ∗) are Qp-vector spaces of dimension one. �

REFERENCES

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor. On the modularity of
elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc., 14(4):843–939 (electronic),
2001.

[Ben11a] Denis Benois. A generalization of Greenberg’s `-invariant. Am. J. Math., 133(6):1573–1632,
2011.

[Ben11b] Denis Benois. Trivial zeros of p-adic L-functions at near central points, 2011. 32pp.,
preprint. http://arxiv.org/abs/1107.1084v2.

[BSDGP96] Katia Barré-Sirieix, Guy Diaz, François Gramain, and Georges Philibert. Une preuve de la
conjecture de Mahler-Manin. Invent. Math., 124(1-3):1–9, 1996.

[Büy12] Kâzim Büyükboduk. Height pairings, exceptional zeros and Rubin’s formula: the multi-
plicative group. Comment. Math. Helv., 87(1):71–111, 2012.

[CG96] J. Coates and R. Greenberg. Kummer theory for abelian varieties over local fields. Invent.
Math., 124(1-3):129–174, 1996.

†where the element [y+v ] ∈ H1(Qv, Y
+
v ) that appears in loc.cit. is the element C0 ∈ H1(Qp, F

+
p V ) here

(thanks to the choice of our normalization factor λ as in (3.15)); and D(Ξ) ∈ H1(Qp, F
−
p V

∗) ⊗ J/J2 is
the element denoted by [(D1xIw)v] ∈ H1(Qv, X

−
v )⊗ J/J2 in loc.cit.



20 KÂZIM BÜYÜKBODUK

[Col98] Pierre Colmez. Théorie d’Iwasawa des représentations de de Rham d’un corps local. Ann.
of Math. (2), 148(2):485–571, 1998.

[Gre89] Ralph Greenberg. Iwasawa theory for p-adic representations. In Algebraic number theory,
volume 17 of Adv. Stud. Pure Math., pages 97–137. Academic Press, Boston, MA, 1989.

[Gre94] Ralph Greenberg. Trivial zeros of p-adic L-functions. In p-adic monodromy and the Birch and
Swinnerton-Dyer conjecture (Boston, MA, 1991), volume 165 of Contemp. Math., pages 149–
174. Amer. Math. Soc., Providence, RI, 1994.

[Gre99] Ralph Greenberg. Iwasawa theory for elliptic curves. In Arithmetic theory of elliptic curves
(Cetraro, 1997), volume 1716 of Lecture Notes in Math., pages 51–144. Springer, Berlin, 1999.

[GS93] Ralph Greenberg and Glenn Stevens. p-adic L-functions and p-adic periods of modular
forms. Invent. Math., 111(2):407–447, 1993.

[Kat04] Kazuya Kato. p-adic Hodge theory and values of zeta functions of modular forms.
Astérisque, (295):ix, 117–290, 2004. Cohomologies p-adiques et applications arithmétiques.
III.

[Kob03] Shin-ichi Kobayashi. Iwasawa theory for elliptic curves at supersingular primes. Invent.
Math., 152(1):1–36, 2003.

[Kob06] Shinichi Kobayashi. An elementary proof of the Mazur-Tate-Teitelbaum conjecture for el-
liptic curves. Doc. Math., (Extra Vol.):567–575, 2006.

[MR04] Barry Mazur and Karl Rubin. Kolyvagin systems. Mem. Amer. Math. Soc., 168(799):viii+96,
2004.

[MTT86] B. Mazur, J. Tate, and J. Teitelbaum. On p-adic analogues of the conjectures of Birch and
Swinnerton-Dyer. Invent. Math., 84(1):1–48, 1986.
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